电池

电池

Veeco Cambridge NanoTech 为所有固态 3D 锂离子电池提供最佳原子层沉积 (ALD) 解决方案:具有低污染、三元和四元锂化膜组合物的可调谐性、可快速进行工艺优化的原位诊断和膜表征的全优化氧化锂薄膜。

薄膜电极、电解质和钝化层

通过在纳米结构化 3D 锂离子电池中实施基于锂的原子层沉积 (ALD) 膜,最近有报告显示功率密度、充放电期间的循环性能和安全性显著增加。

使用 Veeco CNT 原子层沉积 (ALD) 平台,具有高特定容量的电化学活性材料(例如 LiCoO2、LiMn2O4 三元或锂过渡金属磷酸盐四元链(例如 LiFePO4)已成功沉积在高纵横比 3D 纳米结构上,导致快速离子传输和功率密度增加。

固态电解质(例如磷酸锂[8]、钽锂 [12] 或 LiPON [2])已沉积在 Savannah® 和 Fiji® 平台上以实现可调谐的高离子导电性。

另外经证实,在电化学循环期间,通过抑制过渡金属的溶解,同时使锂离子通过钝化层扩散,非常薄的钝化层(例如 Al2O3,<1nm)可显著改善 LIB 的容量保持。[15] 最近,Xiao 和 al. 已经使用具有电化学活性的 FePO4 涂层优化了 LiNi0.5Mn1.5O4 阴极材料的性能层[6]。

3D 锂离子电池的原子层沉积 (ALD) 优势

  • 更高功率
  • 3D 纳米结构的较短扩散路径导致功率密度更高
  • 放电速率
  • 因高表面积比率而改善的充放电速率
  • 周期寿命
  • 使用原子层沉积 (ALD) 钝化层和低应力薄膜改善的周期寿命
  • 安全
  • 非易燃固态电解质

沉积在碳纳米管上的保形 LiFePO4 阴极膜表现出出色的放电容量和速率能力 [10]

Li5.1TaO2 固体电解质沉积在高纵横比 AAO 中,锂离子传导性为 2E-8S/cm [13]

原位 XPS 示范无碳 Li2O 原子层沉积 (ALD)(Fiji® 中的 LiOtBu / H2O)

通过原子层沉积 (ALD) 沉积的 LiPON 固体电解质。离子导电率在膜中调节了 %N 含量 [2]

参考 – 最近在 Veeco CNT 原子层沉积 (ALD)平台上完成的出版物

  1. Liu, J. et al. Atomically Precise Growth of Sodium Titanates as Anode Materials for High-Rate and Ultralong Cycle-Life Sodium-Ion Batteries. J. Mater. Chem. A (2015). doi:10.1039/C5TA08435K
  2. Kozen, A. C., Pearse, A. J., Lin, C.-F., Noked, M. & Rubloff, G. W. Atomic Layer Deposition of the Solid Electrolyte LiPON. Chem Mater 150709110756002–13 (2015). doi:10.1021/acs.chemmater.5b01654
  3. Ahmed, B. et al. Surface Passivation of MoO3 Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes. Acs Appl Mater Inter 150612140338000–10 (2015). doi:10.1021/acsami.5b03395
  4. Ahmed, B., Anjum, D. H., Hedhili, M. N. & Alshareef, H. N. Mechanistic Insight into the Stability of HfO2‐Coated MoS2 Nanosheet Anodes for Sodium Ion Batteries. Small n/a–n/a (2015). doi:10.1002/smll.201500919
  5. Kozen, A. C. et al. Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition. ACS Nano 150513155622005–30 (2015). doi:10.1021/acsnano.5b02166
  6. Xiao, B. et al. Unravelling the Role of Electrochemically Active FePO4 Coating by Atomic Layer Deposition for Increased High‐Voltage Stability of LiNi0.5Mn1.5O4 Cathode Material. Advanced Science n/a–n/a (2015). doi:10.1002/advs.201500022
  7. Liu, J. et al. Atomic layer deposition of amorphous iron phosphates on carbon nanotubes as cathode materials for lithium-ion batteries. Electrochimica Acta (2014). doi:10.1016/j.electacta.2014.12.158
  8. Wang, B. et al. Atomic layer deposition of lithium phosphates as solid-state electrolytes for all-solid-state microbatteries. Nanotechnology 25, 504007 (2014).
  9. Kozen, A. C. et al. Atomic Layer Deposition and In-situ Characterization of Ultraclean Lithium Oxide and Lithium Hydroxide. J. Phys. Chem. C 141106012144006 (2014). doi:10.1021/jp509298r
  10. Liu, J. et al. Rational Design of Atomic-Layer-Deposited LiFePO4 as a High-Performance Cathode for Lithium-Ion Batteries. Advanced Materials n/a–n/a (2014). doi:10.1002/adma.201401805
  11. Yesibolati, N. et al. SnO2 Anode Surface Passivation by Atomic Layer Deposited HfO2 Improves Li-Ion Battery Performance. Small n/a–n/a (2014). doi:10.1002/smll.201303898
  12. Lecordier, L., Insitu process optimization of lithium-based multicomponent oxides, ALD2014, Kyoto Japan
  13. Liu, J. et al. Atomic Layer Deposition of Lithium Tantalate Solid-State Electrolytes. J. Phys. Chem. C 117, 20260–20267 (2013).
  14. Kim, H. et al. Plasma‐Enhanced Atomic Layer Deposition of Ultrathin Oxide Coatings for Stabilized Lithium–Sulfur Batteries. Adv. Energy Mater. 3, 1308–1315 (2013).
  15. Bettge, M. et al. Improving high-capacity Li1.2Ni0.15Mn0.55Co0.1O2-based lithium-ion cells by modifiying the positive electrode with alumina. J Power Sources 233, 346–357 (2013).
  16. Lee, J.-T., Wang, F.-M., Cheng, C.-S., Li, C.-C. & Lin, C.-H. Low-temperature atomic layer deposited Al2O3 thin film on layer structure cathode for enhanced cycleability in lithium-ion batteries. Electrochimica Acta 5,5 4002–4006 (2010).